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Abstract
Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-
to-drag ratio L/D, albatrosses can gain energy from the wind and can travel long
distances with little effort. We simplify the difficult aerodynamic equations
of motion by assuming that albatrosses maintain a constant L/D. Analytic
solutions to the simplified equations provide an instructive and appealing
example of fixed-wing aerodynamics suitable for undergraduate demonstration.

1. Introduction

Albatrosses (figure 1) are among the most pelagic of birds. They nest on remote islands in the
‘Roaring Forties’ and ‘Furious Fifties’, i.e., in the wind-swept southern regions of the Pacific,
Atlantic and Indian Oceans that surround Antarctica. They feed primarily upon squid, and
roam widely for food to feed their young. A typical albatross feeding trip may take 10 days
and cover 1000 km per day. Albatrosses may make half a dozen circumpolar trips each year,
taking advantage of the prevailing westerly winds, and adopting characteristic looping flight
patterns that best extract energy from the wind. When travelling northward they loop in an
anticlockwise direction, and loop clockwise when heading south (we will explain why this is
so).

Albatrosses are supremely well adapted to this pelagic1 life in the windy southern oceans.
They are able to sleep on the ocean surface. They have a unique ‘shoulder lock’ skeletal
adaptation that permits them to maintain their wings outstretched with little effort. Those
wings are made for gliding and soaring, rather than flapping flight; they are very long (the
wings of the Wandering Albatross, Diomedea exulans, are the longest of any living bird, at
3.5 m) and thin, with a large aspect ratio of about 16. Such wings are capable of producing a
ratio of lift-to-drag forces of L/D = 25; this is much greater than the ratio attained by other
birds. (Even that consummate flier the common tern has an L/D ratio that is only half that
of the albatrosses.) The large value of L/D permits an albatross to glide and soar over long

1 Adults nest every second year and spend the rest of their time at sea. Juveniles that have left their nest may not set
foot on land for 7–10 years.
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Figure 1. A pair of black-browed albatrosses. Note the streamlined bodies and slender wings, a
combination that provides a large lift-to-drag ratio. (Photo courtesy of Wim Hoek.)

(This figure is in colour only in the electronic version)

distances without any effort; they are able to fly for hours—and even make headway against
the wind—without once flapping their wings. Such flight requires very little energy: the heart
rate of a soaring albatross is only slightly higher than its basal rate when resting on land [1–3].

Great progress has been made, over the last 30 years, in understanding the physics of
bird flight. Flapping flight is, of course, much more difficult to describe quantitatively than
the well-understood (though mathematically complex) aerodynamics of fixed-wing airplanes
[4–7]. We might expect that soaring bird flight will be less difficult to understand; indeed a
number of studies have been made [8, 9]. Even these, however, may be considered dauntingly
complicated by an undergraduate student. There are a large number of parameters that a flying
bird can vary (such as drag coefficient, wing aspect ratio, wing area, camber and taper) which
are more or less fixed for airplanes. We can turn this added complexity into a simplifying
and reasonable assumption for an albatross flight analysis, however. In this paper, we assume
that albatrosses control their wing camber, taper, etc, so as to maintain a constant (usually the
maximum) value for L/D. We will show that this assumption reduces the flight equations of
motion to a simple differential equation that is straightforward to solve analytically in many
cases of interest. The resulting predictions yield an insight into albatross flight dynamics in a
manner that is accessible to undergraduates.

2. Equation of motion

The velocities and forces relevant to our airborne albatross are shown in figure 2. Note that
the components of ground speed ux,z are related to air speed v via
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Figure 2. Relevant velocities (thin arrows) and forces (thick arrows) describing albatross flight.
The velocities ux,z are measured relative to the ground, whereas v is measured relative to the air

(so that u =
√

u2
x + u2

z is the ground speed and v is the air speed). Wind velocity is w, and so

ux + uz = v + w. Lift and drag force vectors are L, D; the albatross weight is mg.

uz = v sin(θ), ux = v cos(θ) + w. (1)

where w is wind speed. We assume that the wind moves horizontally (w = wx̂, where x̂ is a
unit vector along the x-direction) and that the speed is not constant, but increases with height
z above the ocean surface:

w = −αz. (2)

(The minus sign indicates that the albatross is moving into the wind, as illustrated in
figure 2; for a tailwind w is positive.) This wind shear is due to friction with the ocean
surface and the boundary layer, within which equation (2) applies, and is assumed to extend
to an altitude h = 20 m. Above this altitude the wind speed is assumed to be independent of
height. Such a linear wind speed profile is a simplification of the observed profile (which is
logarithmic), but is convenient for calculation. From figure 2 we can write, for the horizontal
and vertical components of force that act upon the albatross:

−L sin(θ) − D cos(θ) = mu̇x, (3a)

L cos(θ) − D sin(θ) − mg = mu̇z. (3b)

Here we are assuming that the wind and albatross velocity vectors are in the same plane,
so that the problem we address is two dimensional. Substituting from equations (1) and (2)
and noting that ż = uz = v sin(θ), we obtain for the lift and drag forces:

L = mg cos(θ) + mvθ̇ + mvα sin2(θ), (4a)

D = −mg sin(θ) − mv̇ + mvα sin(θ) cos(θ). (4b)

Equations (4) apply in the case of a headwind; for a tailwind α → −α.
To obtain the full equations of motion for bird flight, we must express the lift and

drag forces L and D as functions of airspeed v. Thus, for example, we usually write
D = av2 + bL2/v2. Here a is the sum of profile and parasitic drag coefficients (representing
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the drag on wings and body, respectively) and b is the induced drag coefficient [4]. Lift may
be constant (equal to mg for horizontal flight) but in general it, too, depends upon air speed.
The coefficients a and b depend upon morphological factors that are, at least in part, under
the bird’s control. We use this fact to simplify equations (4) by assuming that our albatross
maintains a constant ratio of L/D; let us denote this ratio by k, and adopt a minimum value of
k = 1 and a maximum value of k = 25 for albatross flight2.

From equations (4) and our assumption L = kD we obtain

v̇ = −g

(
sin(θ) +

1

k
cos(θ)

)
+

[
α sin(θ)

(
cos(θ) − 1

k
sin(θ)

)
− 1

k
θ̇

]
v, (5)

again, α → −α for a tailwind. Equation (5) is relatively easy to work with; in the remainder
of this paper, we solve special cases of interest analytically and in so doing obtain an
understanding of how albatrosses can fly long distances without expending much energy.

3. Special cases: glide angle, efficiency and equilibrium speed

Firstly let us assume that our albatross is in still air (so that α = 0). For a glide along a straight
trajectory (constant θ ), equation (5) reduces to v̇ = −g

(
sin(θ) + 1

k
cos(θ)

)
and so a constant

equilibrium speed occurs for a dive angle θ eq given by tan(θeq) = −1/k. (Negative θ indicates
a descending trajectory; positive θ means ascending, as shown in figure 2.) This well-known
result [10] shows that a high L/D (corresponding to a large k) results in a long glide distance;
an albatross gliding from a certain height will travel further than other birds gliding from the
same height.

Now we consider a rising trajectory in still air with constant θ̇ ≡ ω, so that equation (5)
reduces to v̇ = −g

[
sin(ωt) + 1

k
cos(ωt)

] − ω
k
v. This equation can be solved analytically (via

an integrating factor exp(ωt/k)) to yield for the airspeed:

v(t) =
(
v0 − g

ω
cos(η)

)
exp

(
−ω

k
t
)

+
g

ω
cos(ωt + η) where sin(η) ≡ 2k

k2 + 1
. (6)

Let us say that the albatross ascends a height H and in so doing its speed drops from v0 at
θ = 0 to zero at θ = π/2. The height H is given by

H =
∫ π/2ω

0
dtv(t) sin(ωt). (7)

From equations (6) and (7) and from the boundary conditions, it is straightforward
to calculate the efficiency of this climbing flight manoeuvre. The bird’s initial energy is
Ei = 1

2mv2
0 and its final energy is Ef = mgH . The efficiency is ε ≡ Ef /Ei .

The fractional loss of energy 1−ε for this climbing manoeuvre is plotted in figure 3 as a
function of the lift-to-drag ratio, k. Note that, because of their high k value, albatrosses lose
much less energy during a climb than do birds with lower lift-to-drag ratios. We can infer
from this observation that there is significant selection pressure for albatrosses to evolve high
lift-to-drag ratios (because these birds are so dependent upon efficient flight).

Now we consider the equilibrium (v̇ = 0) speed for the more general case α �= 0. Again
we restrict attention to linear trajectories with a constant θ . Equilibrium speed is readily found
from equation (5) to be

veq = g

α

tan(θ + φ)

sin(θ)
where tan(φ) ≡ 1

k
. (8)

2 Barnes [3] suggests a maximum value of k = 27 whereas Alexander and Vogel [11] adopt a somewhat lower figure
of k = 18. This range of albatross maximum lift-to-drag ratios is high for birds, but is less than can be attained by
modern gliders and sailplanes.
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Figure 3. Fraction of albatross energy lost during a climb (described in the text) versus the
lift-to-drag ratio k.

Does this speed correspond to stable or unstable equilibrium? Stability requires that the
coefficient of v in equation (5) (the term in square brackets) be negative. It is not difficult to
show that this requirement, combined with the requirement that speed v be positive3, means
that for the two cases of practical interest (diving in a tailwind and climbing in a headwind)
the equilibrium speed is unstable. So an albatross must constantly adjust parameters in order
to maintain a constant speed.

4. Rayleigh dynamic soaring

What is special about the two trajectories just mentioned (diving while moving downwind
and climbing while moving upwind)? When combined into a single looping trajectory, these
constitute dynamic soaring (DS), familiar to every glider pilot. DS permits a glider (or
albatross) to extract energy from the wind when there is a vertical velocity gradient, such as
the one that occurs in the lee of a hill or on the boundary layer adjacent to the earth’s surface.
Here we will analyse a simple trajectory that shows how an albatross uses DS to move across
the wind, with no net energy expenditure. Rayleigh, in 1883, was the first to suggest that
seabirds such as albatrosses might exploit the DS technique [12].

Consider the flight trajectory that is sketched in figure 4. Here we have joined together
three two-dimensional trajectories, and so we can apply equation (5) to each segment
separately. The albatross begins at the top of the boundary layer (altitude h = 20 m) with
airspeed vmin = 12 m s−1, which we take to be the minimum airspeed that the bird requires
to maintain lift [13]. Groundspeed is vmin + αh. The first phase of the trajectory consists of a
dive at a constant angle θ1 along the wind direction; the second phase is a long glide at zero
altitude; the third phase is a climb at a constant angle θ3 into the wind, ending at an altitude h

3 Negative v corresponds to movement to the left, in figure 2, which means that the wind (assumed in figure 2 to be
headwind) is a tailwind. Similarly, negative v in a tailwind implies headwind. So, v must be positive.
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Figure 4. Dynamic soaring model trajectory. Wind is from the right; wind speed increases
proportionally with altitude. The three flight phases consist of (I) diving downwind (II) gliding
at zero altitude, where there is no wind (III) climbing into the wind. The albatross begins at an
altitude h, heading downwind with the air speed vmin, and finishes at the same altitude heading
upwind with the air speed vmin + 2αh. Albatross flight speed relative to the earth’s surface is the
same at the start and finish (vmin + αh), and so the albatross energy at the start and finish is the
same. Such zero-energy trajectories are possible. The bird moves a distance 2R across the wind,
and a distance x3−x1 upwind. The diagram shows the trajectory in a frame moving with the wind
speed; in a frame fixed to the surface the trajectories of phases I and III are curved.

with the airspeed vmin + 2αh (so that groundspeed is once again vmin + αh). Thus the albatross
has travelled across the wind a distance 2R at a net cost of zero energy. We will show that
such a trajectory is possible. This calculation goes a long way towards demonstrating how
albatrosses can exploit DS to extract energy from the wind, but it does not quite provide a full
explanation, because we have not closed the trajectory: the albatross needs to turn at the end
of the third phase, so that it is pointing downwind. This omission and other deficiencies of the
simple trajectory of figure 4 are discussed below, where we argue that, in fact, our calculation
underestimates the energy extracted from the wind.

The virtue of our simple trajectory is that albatross speed during each phase can be
calculated readily from equation (5). Thus, for example, phase II begins with the albatross at
speed v1 and ends at speed v2; the equation of motion reduces to v̇ = −g/k (from equation
(5), with θ = θ̇ = 0). So, we see why large L/D ratio k helps the bird glide further than
would be the case for a small L/D value. Phases I and III are both described by an equation
of motion of the form v̇ = a + bv, where the constants a and b depend upon parameters θ ,
k and α. There is an additional constraint for phases I and III:

∫
dt v(t) sin(θ1,3) = h. All

of these equations are trivial to solve. Matching solutions at the boundaries is tedious but
straightforward. We leave the detailed solutions to the interested reader, and here will simply
summarize the results.

Firstly we note that the parameters are constrained as follows:

cos(θ1) +
sin(θ1)

k1
+ cos(θ3) − sin(θ3)

k3
> 2, (9)

where subscripts 1, 3 refer to phases I, III. Parameters that satisfy inequality (9) do not always
lead to acceptable solutions; (9) is a necessary but not sufficient condition. From (9), we see
that a low value for k1 is required—the albatross flying in a tailwind benefits from high drag.
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We choose k1 = 1. We also see that climb angle should be small, and that the L/D ratio k3

should be as large as possible. We choose k3 = 25, and we find that a climb angle of θ3 = 15◦

works. The equations of motion show that the trajectory of figure 4 is possible only for steep
dive angles; here we choose dive angle θ1 = −60◦.

Calculations show that figure 4 trajectories are possible in moderate to strong winds, with
gradients exceeding α = 0.5 s−1 (which corresponds to wind speeds above the boundary layer
of αh = 10 m s−1 or 36 kph). The change in albatross energy during each phase is

	E1 = 1
2mv2

1 − mgh − 1
2m(vmin + αh)2, (10a)

	E2 = 1
2mv2

2 − 1
2mv2

1, (10b)

	E3 = mgh + 1
2m(vmin + αh)2 − 1

2mv2
2 . (10c)

Note that energy is determined in a reference frame that is fixed to the earth’s surface.
The total energy change over the trajectory is zero, in this frame, by construction. The air
speeds v1,2 apply at the beginning and end of phase II, as shown in figure 4. These speeds are
found to be quite high, varying from v2 = 29.760 m s−1 for α = 0.5 to v1 = 40.094 m s−1

for α = 0.9. Solutions in stronger winds (larger α) are possible, at even higher speeds.
Albatrosses are certainly capable of such speeds: measurements of one grey-headed albatross
during an Antarctic storm showed that the bird travelled for 9 h at ground speeds of between
110 kph (30.5 m s−1) and 168 kph (46.7 m s−1) [14]. The changes in energy for the three
phases of the figure 4 trajectory are plotted in figure 5. Energy is gained during the dive (phase
I), lost during the zero-altitude glide (phase II) and lost a little during the climb (phase III).
This behaviour is easy to understand qualitatively. The albatross is pushed along by the wind
during the dive, and so picks up more speed than we would expect simply from the change in
altitude. Energy is lost to drag during the horizontal wave-top glide. Perhaps more surprising
is the relatively small loss of energy during the climb phase. Here the albatross is gaining
height and flying into the wind, and yet it picks up airspeed. Of course, the ground speed falls
as the bird rises.

We also plot the albatross cross-wind and upwind speeds in figure 5. These speeds
are calculated relative to the surface. So, for example, an albatross that repeatedly flies the
DS trajectory of figure 4 in a strong wind gradient of α = 0.9 s−1 will drift more or less
perpendicular to the wind direction at a speed of about 19 m s−1. In a gentler gradient of α =
0.6 s−1, assuming that the bird adopts the same dive and climb angles, the cross-wind speed
will be about 9 m s−1, while the upwind speed is 8 m s−1. By changing dive and climb angles,
an albatross can alter its drift direction.

Finally, we note that DS still occurs if the albatross maximum L/D is reduced (to k = 20)
and the minimum velocity is increased (to vmin = 15 m s−1); the trajectory speed is increased
by about 3 m s−1, assuming all other parameters are unaltered, and DS requires stronger winds
(a minimum value of α = 0.65 s−1). DS is more severely limited if the minimum L/D is
increased: α must exceed 0.85 s−1 if k1 is increased from 1.0 to 1.5. We may conclude that,
for a wide range of parameters, it is possible for albatrosses to exploit the Rayleigh DS in
moderate to strong wind conditions.

5. DS model limitations

The central assumptions of our DS model are

(1) constant L/D during each phase of the trajectory,
(2) linear wind speed profile,
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Figure 5. (a) Gain in albatross energy during phase I (solid line), phase II (dashed line) and phase
III (dot–dash line) for a bird of mass 11 kg. (b) Albatross speed relative to the earth’s surface
across the wind (filled circles) and upwind (open circles). In both cases the horizontal axis is wind
gradient parameter α (s−1).

(3) transition effects between flight phases are negligible and
(4) wave lift and the ground effect are negligible during phase II.

The first is a plausible hypothesis; for example, it is reasonable to assume during phases
II and III that the albatross will maintain L/D as high as possible—evolution has provided
it with the capability of exceptionally large L/D, which benefits the bird during these flight
phases—and so k is fixed at the maximum value. The second assumption is a mathematical
simplification that approximates the actual wind speed profile. Thus the DS model has zero
wind speed near the surface and constant speed above the boundary layer, as in the real world;
the model predictions that depend upon speed profile will approximate real world observations.
Transparency has been attained at the cost of approximation (a statement that could be applied
to much of physics).

The third assumption refers to the adjustments in wing shape, angle of attack, etc, that are
necessary for the albatross to change flight direction and (between phases I and II) k value.
We have assumed that these adjustments do not consume significant energy. This may be
reasonable for the transitions between phase I and II, and between II and III, but it is surely
not reasonable for the transition between phase III and phase I. During this transition the
albatross must turn around, from flying into the wind to flying downwind, at the highest point
of the trajectory where wind speed is greatest. We have not modelled this transition because
it would be very complicated to do so: the k value and apparent wind direction change during
the turn, as does the albatross cross-sectional area that is exposed to the wind. The purpose of
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our simple DS model is to demonstrate that an albatross can use the wind energy to move; it
can travel large distances without exerting much internal energy. Neglecting the turn between
flight phase III and flight phase I does not invalidate this model result, we argue, because the
turn will increase the albatross energy4, so that it is easier than predicted here for the albatross
to utilize DS. Thus our simple model cannot calculate the turn, and so underestimates the
benefits gained by DS.

The fourth assumption is made because modelling the ground effect, and the influence of
surface waves upon albatross flight, is complicated. The ground effect (disturbance of wingtip
vortices by the ground, or ocean surface, resulting in additional lift) is exploited in several
airplane designs. It has also been shown to benefit certain birds (such as skimmers) that fly
close to the water surface [15]. The action of waves has been shown to benefit albatross flight:
the bird gains thrust while drag is reduced, to an extent that depends in a complicated way
upon the surface wave parameters [16]. Thus, once again, ignoring a complication leads to
our model underestimating the ability of albatrosses to exploit DS. Thus our simple model
predicts a minimum DS capability.

6. Summary and discussion

Albatross flight dynamics is of interest beyond the biomechanics community. There is much
research today into micro air vehicles (MAVs) and the aerodynamics of such vehicles has
much in common with those of soaring birds. Thus, much of the analysis associated with
MAV development has incorporated albatross DS studies [9] or has been inspired by albatross
flight [17–20]. Radio-controlled mechanical models of albatrosses have been demonstrated to
exploit DS.5 (These models are hand-launched and the energy for flight, apart from this initial
boost, is extracted from the wind.)

Detailed models of albatross flight [3, 8, 9, 20] are too complicated to be transparent to
non-specialists. Here we have developed a mathematical model of albatross DS that is simple
and yet captures much of the underlying physics6. The albatross is assumed to progress by
repeating a DS trajectory that is divided into three two-dimensional phases. The resulting
equations of motion for each phase are very simple. Complications that are omitted (the
ground effect and the influence of waves during flight phase II, and the dynamics of the turn
that occurs between phase III and phase I) will aid the albatross, and so our simple model
underestimates the benefits that it gains from DS. Despite these oversimplifications, our model
agrees quite well with the few experimental results and observations that are available. Thus,
for example, the bank angle B during turns is readily determined from the centrifugal force
and weight vectors: tan(B) = v2/gR; in our model it varies between B = 81◦ and B =
51◦ for α = 0.55–0.9. Observed bank angles are estimated to be in the range 60◦–70◦ [20].
Looping DS trajectory in our model varies in length scale from 2R = 30 m at α = 0.55 to 2R =
240 m at α = 0.9, whereas observations from ships indicate length scales of a few hundred
metres [2]. Trajectory durations of 5.0–12.7 s compare with observed durations of 9.6–10.9 s
[20]. Clearly the simple model is at least compatible with observations.

4 The turn increases energy because the bird’s cross-sectional area projected along the wind direction will increase,
reaching a maximum when the bird is mid-turn, and this increased area will increase the wind force acting upon the
bird, so that the downwind speed at the start of phase I will exceed vmin.
5 See, for example, the YouTube video at http://www.youtube.com/watch?v=0rekaYTsY3I.
6 Thus, for example, we see why albatrosses loop anticlockwise when heading north and clockwise when heading
south: the prevailing winds are westerly and so the Rayleigh DS technique requires such trajectories.
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