Visualization of Zero, Second, Fourth, Higher Order Tensors, and Invariance of Tensor Equations
Introduction

Review of past research on second order tensor techniques

1. Symmetric/ Anti-symmetric tensors

2. Eigenvalue decomposition

3. Tensor Ellipsoids

4. Hyperstreamlines

5. Color coding techniques

6. Iso-surface generation

7. Haber Glyphs

8. Interactive Methods

2nd Order Tensors, Their Gradients and Quadric Surfaces

Two different ellipsoids

A 2nd-order symmetric tensor can be represented with ellipsoids by means of two entirely different methods. Where the conventional eigenvalue and eigenvector decomposition, as we have described below, is very well studied, there is yet another quadric surface that can be constructed from the stress tensor; the stress quadric
.
Beginning with 
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and using the standard quadric surface in 3D as, 
A0 + A1 x2 + A2 y2 + A3 z2 + A4 xy + A5 xz + A6 yz + A7 x + A8 y + A9 z = 0 


(2)
the stress quadratic (1) is a special closed surface with the parameters
A0 = ( k2, 

A1 = (11, A2 = (22, A3 = (33,
A4 = ((21 +(12), A5 = ((13 +(31), A4 = ((23 +(32) and

A7 = A8 = A9 = 0.








(3)
[FIGURE: Stress Quadric]

There are two characteristic features of the stress quadric that is of paramount importance in scientific visualization.
1. Let P be the center of the ellipsoid and Q be any point on the quadric and the distance PQ = r. The normal stress at P, acting in the direction PQ is inversely proportional to r2.
2. The stress vector acting across the area that is normal to PQ, is parallel to the surface of the stress quadric at Q.

The first property of the stress quadric is exactly the inverse of the conventional stress ellipsoid where the longest eigenvector corresponds to the maximum stress vector. In this sense, the stress quadric can be can be misleading; the square of the length of the principal axes are inversely proportional to the principal stresses, whereas the stress ellipsoid gives an exact representation of the major, medium and minor principal stresses.
It is the second property that makes the stress quadric more exact to the representation of stress ellipsoids. The surface normal of the quadric is parallel to the stress vector acting in that direction, whereas the stress ellipsoid surface has no physical significance. We would like to express the fact that the stress quadric enjoys a sounder physical basis then the stress ellipsoids for the visualization of stress tensors, which we will be demonstrating below.


Shearing stress
The eigenvalue/ eigenvector decomposition of any tensor is a transformation of the tensor to a coordinate system in which the principal axes denotes directions without shearing stresses. The information of the shearing stress, which is usually the only factor in stress induced deformations and cracks, is not possible to extract from the eigenvalue ellipsoids. From the insight of the stress quadric, one can map the shearing stress at any point on the surface of the stress quadric and/ or the stress ellipsoid as color. We will use the stress ellipsoid instead of the quadric, because the ellipsoid is more intuitive for a visual analysis, as previously described.
[FIGURE: COLOR MAPPING of the STRESS ELLIPSOID]

Let P be the center and Q be any point on the eigenvalue ellipsoid. The direction cosines of PQ are
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where r = |PQ|. The stress vector in this direction is given by


[image: image2.wmf]j

ji

i

n

s

s

=

. 





(5)
And the angle between the normal of the surface and the stress vector is calculated using the scalar product of the stress vector and the surface normal,
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(6)
The cosine of the angle can now be mapped so that an angle of 90( corresponds to a pure shear stress, 0( to pure tension and 180( to pure compression. One can easily observe the shearing stress on the ellipsoids as bands of color traversing the ellipsoids. We have applied this technique to extract the shearing stress of a shot peened material below.
Visualization of Tensor Gradients and Equilibrium
Consider an arbitrary region R of the continuum bounded by a surface S.  The force equilibrium for this region can be written as
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(7)
where (i  is the stress vector acting on a surface S and fi is the body forces per unit mass element. If we confine ourselves to the field of residual stress analysis; we can assume the body forces to be zero, and using Gauss theorem one can write the surface integral as a volume integral as
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Since the equation should holds true for any arbitrary region, we can generalize the equation as
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(9)
Equation (9) is an expression of the static equilibrium. It is quite interesting to realize that equilibrium state can be visualized by means of a stress tensor gradient. This comes quite close to visualization of physical laws by means of stress gradients. 
The gradient of a stress tensor can be visualized by means of stacking discrete glyphs in a particular direction. In the limiting sense the ellipsoids can also be combined to form a continuous tube. We would like to emphasize here that the discrete glyphs, in the limiting case, may or may not converge to a tube form. In some applications, once a particular direction is chosen it is possible that the glyphs in that region may be from different family of ellipsoids corresponding to different streamlines.
[FIGURE: DISCRETE GLYPHS and TUBES]
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