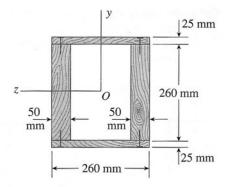

1. Draw the shear-force and bending-moment diagrams for a cantilever beam AB supporting a linearly varying load of maximum intensity q_0 (see figure), and solve for the equations as a function of x for V(x) and M(x) using a cut free body method and also by integration where w(x) is a the slope shown in the figure below. Set the origin of x=0 at A.

2. A beam of T-section is supported and loaded as shown in the figure. The cross section has width b = 2.1/2 in., height b = 3 in., and thickness t = 1/2 in.


Determine the maximum tensile and compressive stresses in the beam.

PROB. 2.

3. A box beam of wood is constructed of two $260 \text{ mm} \times 50 \text{ mm}$ boards and two $260 \text{ mm} \times 25 \text{ mm}$ boards (see figure). The boards are nailed at a longitudinal spacing s = 100 mm.

If each nail has an allowable shear force $F=1200~\mathrm{N},$ what is the maximum allowable shear force V_{max} ?

PROB. 3